2024 Impact factor 2.2
Soft Matter and Biological Physics

EPJ Plus Focus Point on Cancer & HIV/AIDS Dynamics: From Optimality to Modelling

This Focus Point covers twelve original papers obtained from advanced theoretical analysis, experimental, and numerical simulations in Cancer and HIV/AIDS research. Results include a randomized discrete logistic equation to describe the dynamics of breast tumor; a mathematical model of breast cancer involving a system of differential equations with piecewise constant arguments to analyze the tumor growth and chemotherapeutic treatment; a new stochastic HIV mathematical model; incorporation of the Beddington–DeAngelis incidence rate to a continuous-time HIV infection model with cure rate and full logistic proliferation; a model for the tumor and normal cell growth under the influence of carcinogenic agents, an immunomodulator and variable influx of immune cells; a within-host HIV dynamical model under the effect of cytotoxic T lymphocytes immune response; the study of the interaction between drug addiction and the contagion of HIV/AIDS; a system of fractional differential equations with delays and a new computational method based on hybrid functions and Legendre polynomials with application to immunodeficiency viruses systems; investigation of cervical cancer; an HIV/AIDS epidemic model under fractal-fractional-order derivatives; study of the dynamics of HIV-AIDS infection via a fractional order SICA system; and sufficient conditions for the stability of a system describing the growth of malignant tumors.

All articles are available here and are freely accessible until 16 May 2021. For further information read the Editorial.

Editors-in-Chief
F. Croccolo, G. Fragneto and H. Stark
I am thankful to you and the Editor for the entire effort and prompt action whenever needed.

Sutapa Mukherji, Central Food Technological Research Institute, Mysore, India

ISSN (Print Edition): 2429-5299
ISSN (Electronic Edition): 2725-3090

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag