2019 Impact factor 1.812
Soft Matter and Biological Physics

EPJ E Topical Issue: Physics of phase separation in cell biophysics: From non-equilibrium droplets to reaction-diffusion systems

Submissions are invited for a Topical Issue of EPJ E on Physics of phase separation in cell biophysics: From non-equilibrium droplets to reaction-diffusion systems.

Phase separation has emerged as a key physical concept in cellular biophysics [1,2]. For example, in living cells, the spatial and temporal organization of proteins, DNA as well as RNA, and their chemical reactions can be regulated by phase-separated droplets in the cytoplasm. In addition, phase separation has also been invoked as a key concept to understand prebiotic chemistry at the origin of life. These ideas were pioneered by Oparin [3] and Haldane [4] who proposed that macromolecular coacervates could have played an important role in organizing prebiotic chemical reactions. Both modern and early cells rely on a continuous in- and outflux of energy and matter, which drive chemical reactions away from equilibrium. The interplay of such reactions with the physics of phase separation gives rise to a rich set of phenomena such as the control of droplet size, position, and of biochemical reactions. The dynamics of phase separation in these chemically driven emulsions, also referred to as active emulsions [5], is therefore often quite different from those typically observed in soft matter systems which approach thermodynamic equilibrium.

Read more...

EPJ E Topical Issue: Advances in Computational Methods for Biological Physics

Submissions are invited for a Topical Issue of EPJ E on Advances in Computational Methods for Biological Physics.

Over the last decade computational methods for biological physics have advanced enormously. This is due in part to the ever decreasing cost of computing power, as well as the ever increasing detail with which physical aspects of biological systems can be measured and compared with theory and simulations. However, key challenges remain, including how to simulate, analyse, and derive effective theories from complex multiscale or multiphysics models of biological processes on complex or evolving domains. This Topical Issue aims to showcase exciting recent advances in this area.

Read more...

EPJ E Topical Issue: Disordered, non-equilibrium systems: From supercooled liquids to amorphous solids

Submissions are invited for a Topical Issue of EPJ E on Disordered, non-equilibrium systems: From supercooled liquids to amorphous solids

If a liquid is cooled fast enough to avoid crystallization the system enters a metastable state, the supercooled liquid. If we keep cooling the liquid, the relaxation time increases so steeply that the system behaves as a solid: a disordered, amorphous, solid. The methods used to understand ordered solids do not translate well to the understanding of disordered solids due to a lack of obvious symmetries and to the presence of an extremely large number of competing metastable states.

Read more...

EPJ E Topical Issue: Physics and Geometry of Flexible Plates and Shells

Submissions are invited for a Topical Issue of EPJ E on Physics and Geometry of Flexible Plates and Shells.

During the last decade there has been a growing activity in studying the physics of slender extended objects, thin plates or shells, as much experimentally as from the theoretical and numerical side. Such slender structures offer a wealth of interesting phenomena as they undergo crumpling, wrinkling, folding or growth.

Read more...

Editors-in-Chief
F. Croccolo, F. Graner and H. Stark
I am thankful to you and the Editor for the entire effort and prompt action whenever needed.

Sutapa Mukherji, Central Food Technological Research Institute, Mysore, India

ISSN (Print Edition): 1292-8941
ISSN (Electronic Edition): 1292-895X

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag