2024 Impact factor 2.2
Soft Matter and Biological Physics

EPJ B Highlight - How a molecular motor moves in a network

Ratchets transfer energy in a lattice arrangement. Credit: M. A. Taye

A new study determines the efficiency of a single-molecule heat engine by considering a series of ratchets that transfer energy along a network.

From internal combustion engines to household refrigerators, heat engines are a ubiquitous component of daily life. These machines convert heat into usable energy which can then be used to do work. Heat engines can be as small as a single molecule whose random movements exchange energy with the environment. But determining the efficiency of a molecular heat engine is no simple task. In a study published in EPJ B, Mesfin Asfaw Taye, of West Los Angeles College, California, USA now calculates the performance of a molecular heat engine in terms of a series of molecular ratchets that transfer energy, step-wise, in one direction. He shows and discusses how to manipulate such a system for transporting a particle along a complex path.

Taye and his colleagues have previously invoked the concept of a “Brownian ratchet” to calculate the velocity, efficiency, and overall performance of a molecular heat engine. Here, a particle (the motor) changes position through thermal motion according to a mechanism that forces an otherwise randomly moving object to travel in one direction only.

Now Taye and his group provide a complete analytical solution to their model equations, that allows them to calculate the system’s performance at every time along the way. Doing so provides a way to examine how the ratchet arrangement impacts the motor’s efficiency and velocity. They also show that a motor operating in a heat bath with gradually decreasing temperature can lead to higher velocity but lower efficiency compared to a system with fixed hot and cold baths—another tool for manipulating the motor’s movement.

This finding provides a framework for studying the thermodynamic features of protein-based molecular motors and other micro- and nano-scale systems known to convert chemical energy into mechanical motion. It offers a way of transporting a particle to a desired location in a network at a speed that depends on the arrangement of the ratchets.

Editors-in-Chief
F. Croccolo, G. Fragneto and H. Stark
I have always greatly appreciated your very professional and at the same time very kind help all along the process of submission, referral, revision and finally publication of papers. Please accept my sincere thanks and best regards,

P. Pieranski, Université Paris-Sud, France

ISSN (Print Edition): 2429-5299
ISSN (Electronic Edition): 2725-3090

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag