2024 Impact factor 2.2
Soft Matter and Biological Physics

EPJ B Colloquium - Ergodicity and large deviations in physical systems with stochastic dynamics

In ergodic physical systems, time-averaged quantities converge (for large times) to their ensemble-averaged values. Large deviation theory describes rare events where these time averages differ significantly from the corresponding ensemble averages. It allows estimation of the probabilities of these events, and their mechanisms, and has been applied to a wide range of physical systems, including exclusion processes, glassy materials, models of heat transport, proteins, climate models, and non-equilibrium quantum systems.

In a new Colloquium article published in EPJB, Dr Robert Jack (University of Cambridge, UK) outlines the application of large deviation theory to these systems, where it has yielded fresh insights into entropy production, current fluctuations, metastability, transport processes, and glassy behaviour. The article covers some recent developments and identifies general principles, discussing a selection of dynamical phase transitions, and highlighting some connections between large-deviation theory and optimal control theory.

Robert L. Jack (2020),
Ergodicity and large deviations in physical systems with stochastic dynamics
,
European Physical Journal B 93:74, DOI: 10.1140/epjb//e2020-100605-3

Editors-in-Chief
F. Croccolo, G. Fragneto and H. Stark
Many thanks for the prompt and very professional editing. Kudos for your work!

Igor M. Kulić, CNRS, Institute Charles Sadron, Strasbourg, France

ISSN (Print Edition): 2429-5299
ISSN (Electronic Edition): 2725-3090

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag