2023 Impact factor 1.8
Soft Matter and Biological Physics

EPJ A Highlight - Automated symmetry adaption in nuclear many-body theory

alt
Symmetry reduction process of a prototypical many-body expression leading to an equivalent symmetry-reduced form. Recoupling coefficients arising from the AMC program are shown in red.

The extreme cost of solving the A-nucleon Schrödinger equation can be minimized by leveraging rotational symmetry and, thus, enable the computation of observables in heavy nuclei and/or with high precision.

The associated reduction process, which amounts to re-expressing the working equations in terms of rotationally-invariant objects, requires lengthy symbolic manipulations of elaborate algebraic identities.

For the first time, this involved process is automated by a powerful graph-theory-based tool, the AMC code, which condenses months of error-prone derivations into a simple computational task performed within seconds.

The AMC program tightens the gap for a full automation of the many-body workflow, thereby lowering the time required to build and test novel quantum many-body formalisms.

Editors-in-Chief
F. Croccolo, G. Fragneto and H. Stark
I am thankful to you and the Editor for the entire effort and prompt action whenever needed.

Sutapa Mukherji, Central Food Technological Research Institute, Mysore, India

ISSN (Print Edition): 2429-5299
ISSN (Electronic Edition): 2725-3090

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag