2024 Impact factor 2.2
Soft Matter and Biological Physics

EPJ Quantum Technology Review - Macroscopic Quantum Resonators (MAQRO): 2015 update

alt

Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schrödinger’s cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow researchers to address such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored ‘quantum-classical’ transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology.

In this review article, the authors present the MAQRO proposal submitted in response to the ESA's 4th Cosmic Vision call for a medium-sized mission (M4) with a possible launch in 2025, and review the progress with respect to the original MAQRO proposal made in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfil the stringent environmental requirements for macroscopic quantum experiments.

Editors-in-Chief
F. Croccolo, G. Fragneto and H. Stark
To the editorial team (in charge of final copy editing and production): Thank you for your high quality, speedy work.

Jean-Noël Roux, Université Paris-Est, Laboratoire Navier, IFSTARR, ENPC, CNRS, Champs-sur-Marne, France

ISSN (Print Edition): 2429-5299
ISSN (Electronic Edition): 2725-3090

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag