2017 Impact factor 1.802
Soft Matter and Biological Physics

News / Highlights / Colloquium

EPJ E Highlight - Making the most of carbon nanotube-liquid crystal combos

Dispersed multi-wall carbon nanotubes on a glass surface. © Yakemseva et al.

A better understanding of the physical response of combination materials made of nanotubes with ferroelectric liquid crystals could soon open the door to applications as sensors or switches

Dispersions of carbon nanotubes with liquid crystals have attracted much interest because they pave the way for creating new materials with added functionalities. Now, a study published in EPJ E by Marina Yakemseva and colleagues at the Nanomaterials Research Institute in Ivanovo, Russia, focuses on the influence of temperature and nanotube concentration on the physical properties of such combined materials. These findings could have implications for optimising these combinations for non-display applications, such as sensors or externally stimulated switches, and novel materials that are responsive to electric, magnetic, mechanical or even optical fields.


EPJ E Topical Review: Foaming experiments on the ISS


Foams and foaming processes pose interesting questions for both fundamental research and practical applications. Although foams are a familiar thing, both in our everyday lives and in industry, many aspects of foam physics and chemistry still remain unclear.

This EPJ E paper comprehensively reviews the studies of foams under microgravity, including studies conducted in parabolic flights, in sounding rockets and in the International Space Station.


EPJ E Highlight - Towards tailor-made adhesives

View of the cavitation process, with blue contours representing the borders of the cavities. © Tanguy et al.

The inner structure of soft adhesive materials during the debonding process is, for the first time, under scrutiny in the hope of producing new, improved adhesives in the future

Tape, self-adhesive labels, Post-it notes and masking tape all contain soft adhesives. This makes them easy to remove—a process referred to as debonding. French scientists have studied how soft adhesives work in the hope of facilitating the design of more efficient adhesives. Francois Tanguy, a researcher at ESPCI ParisTech, the School of Industrial Physics and Chemistry, in Paris, France, and colleagues have, for the first time, performed a precise analysis of the material deformation and structure during the course of debonding for several model adhesives. Their findings are published in EPJ E. By better understanding the connection between the energy dissipated by the polymeric material with adhesive qualities and its response to traction, they hope to improve models of adhesive performance.


EPJ E Highlight - Elucidating biological cells’ transport mechanisms

Image of mitochondria observed by transmission electron microscopy. © K. Hayashi et al.

A new study focuses on the motion of motor proteins in living cells, applying a physicist’s tool called non-equilibrium statistical mechanics

Motion fascinates physicists. It becomes even more intriguing when observed in vivo in biological cells. Using an ingenious setup, Japanese scientists have now calculated the force of molecular motors acting on inner components of biological cells, known as organelles. In this study, the focus is on mitochondria—akin to micrometric range cellular power plants—travelling along microtubules in a cell. Published in EPJ E by Kumiko Hayashi, from Tohoku University, Sendai, Japan, these findings could contribute to elucidating the transport mechanism in biological cells by multiple motors.


EPJE Colloquium - Electrification of wind-blown sand


A new Colloquium in EPJE by Xiao-Jing Zheng introduces and reviews the fundamental laws of the electrification of wind-blown sand and their influence, and highlights the challenges in this field.

The electrification of wind-blown sand is a typical complex system characterised by nonlinearity, randomness, multi-field coupling between thermal diffusion, E-fields and sand movements, as well as trans-scale processes with multi-phase media. Owing to the complex mechanism and the influence of the electrification of wind-blown sand [19], a number of issues remain poorly understood. These include: (1) why sand particles get charged during wind-blown sand movements; (2) how many electric charges a sand particle acquires; (3) why the electric polarity of sand particles is related to the particles’ size; (4) what the change law of wind-blown sand E-fields is, and (5) how to predict the intensity and influence of wind-blown sand E-fields.


EPJ E Highlight - Levitating foam liquid under the spell of magnetic fields

Image of the surface of the foam chamber under experimental study. © N.Isert et al.

No better solution to studying ever-draining foams than applying a strong magnetic field to keep the liquid in the foam at a standstill by levitating its water molecules

Foams fascinate, partly due to their short lifespan. Foams change as fluid drains out of their structure over time. It is precisely their ephemeral nature which has, until now, prevented scientists from experimentally probing their characteristic dynamics further. Instead, foams have often been studied theoretically. Now, Nathan Isert from the University of Konstanz, Germany and colleagues, have devised a method of keeping foams in shape using a magnet, which allows their dynamics to be investigated experimentally, as recently described in EPJ E.


EPJ E Highlight - Uncovering liquid foams bubbly acoustics

Typical image of a bubble raft analysed for bubble-size determination. © J.Pierre et al.

First study to shows specific sounds’ speed and attenuation characteristics in liquid foam, opens the door to new type of sound proofing material

Liquid foams fascinate toddlers singing in a bubble bath. Physicists, too, have an interest in their acoustical properties. Borrowing from both porous material and foam science, Juliette Pierre from the Paris Diderot University, Paris, France and her colleagues studied liquid foams. They used an impedance tube to measure the velocity and attenuation of acoustic waves in liquid foams in a broad frequency range. The study published in EPJ E is a first in the literature. It could help in assessing any liquid foam’s bubble size or in designing the optimal foam structure for sound proofing.


EPJ E Highlight - Understanding the evolution of lungs through physical principles

Small bronchia, bronchioles (in white) and pulmonary arteries and veins in the human lung. Courtesy of E. R. Weibel

How fluid dynamics and transport shaped the structure of our lungs in the course of evolution.

Two French physicists, Bernard Sapoval and Marcel Filoche from École Polytechnique in Palaiseau, France, suggest in a study published in EPJ E how evolution has shaped our lungs through successive optimisations of physical parameters such as conservation of energy and speed of delivery.


EPJ E Highlight - Greater desertification control using sand trap simulations

Spatial distribution of sand particles in the test straw checkerboard barrier.

A new simulation will help improve artificial sand-control measures designed to help combat desertification by identifying their weaknesses

In the fight against desertification, so-called straw checkerboard barriers (SCB), consisting of half -exposed criss-crossing rows of straw of wheat, rice, reeds, and other plants, play a significant role. The trouble is that our understanding of the laws governing wind-sand movement in SCB and their surrounding area is insufficient. Now, Ning Huang and colleagues from Lanzhou University in China, have performed a numerical simulation of the sand movement inside the SCB, described in a paper just published in EPJ E. Their country is particularly affected by desertification, which affects 18% of its territory. The results will help us to understand sand fixation mechanisms that are relevant for sandstorm and land-desertification control.


EPJE news: Julia Yeomans awarded the EPJE P.-G. De Gennes lecture prize

Julia Mary Yeomans.

The 2013 edition of the EPJE Pierre Gilles De Gennes prize has been awarded by the EPJE editors to Professor Julia Yeomans of the University of Oxford, UK. This initiative of the European Physical Journal E - Soft Matter and Biological Physics takes the name from the illustrious Nobel laureate who founded the journal.

Professor Yeomans has been nominated for her profound contribution to the study of the dynamical behaviour of complex and active liquids in confined geometries. She is an expert in theoretical and computational physics, particularly statistical physics, hydrodynamics, soft condensed matter and biological physics. Among her current research interests are microswimmers, active systems, liquid crystals and the interactions of fluids with structured surfaces.


F. Graner and F. Sciortino
I am thankful to you and the Editor for the entire effort and prompt action whenever needed.

Sutapa Mukherji, Central Food Technological Research Institute, Mysore, India

ISSN (Print Edition): 1292-8941
ISSN (Electronic Edition): 1292-895X

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag