https://doi.org/10.1140/epje/s10189-021-00043-8
Regular Article - Flowing Matter
Collective behavior of thermophoretic dimeric active colloids in three-dimensional bulk
Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany
Received:
19
December
2020
Accepted:
22
February
2021
Published online:
27
March
2021
Colloids driven by phoresis constitute one of the main avenues for the design of synthetic microswimmers. For these swimmers, the specific form of the phoretic and hydrodynamic interactions dramatically influences their dynamics. Explicit solvent simulations allow the investigation of the different behaviors of dimeric Janus active colloids. The phoretic character is modified from thermophilic to thermophobic, and this, together with the relative size of the beads, strongly influences the resulting solvent velocity fields. Hydrodynamic flows can change from puller-type to pusher-type, although the actual flows significantly differ from these standard flows. Such hydrodynamic interactions combined with phoretic interactions between dimers result in several interesting phenomena in three-dimensional bulk conditions. Thermophilic dimeric swimmers are attracted to each other and form large and stable aggregates. Repulsive phoretic interactions among thermophobic dimeric swimmers hinder such clustering and lead, together with long- and short-ranged attractive hydrodynamic interactions, to short-lived, aligned swarming structures.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.