https://doi.org/10.1140/epje/s10189-022-00172-8
Regular Article - Soft Matter
A two-fluid model for the macroscopic behavior of polar nematic fluids and gels in a nonchiral or a chiral solvent
1
Department of Physics, University of Bayreuth, 95440, Bayreuth, Germany
2
Max Planck Institute for Polymer Research, 55021, Mainz, Germany
Received:
15
December
2021
Accepted:
14
February
2022
Published online:
26
February
2022
We present the macroscopic dynamics of polar nematic liquid crystals in a two-fluid context. We investigate the case of a nonchiral as well as of a chiral solvent. In addition, we analyze how the incorporation of a strain field for polar nematic gels and elastomers in a solvent modifies the macroscopic dynamics. It turns out that the relative velocity between the polar subsystem and the solvent gives rise to a number of cross-coupling terms, reversible as well as irreversible, unknown from the other two-fluid systems considered so far. Possible experiments to study those novel dynamic cross-coupling terms are suggested. As examples we just mention that gradients of the relative velocity lead, in polar nematics to heat currents and in polar cholesterics to temporal changes of the polarization. In polar cholesterics, shear flows give rise to a temporal variation in the velocity difference perpendicular to the shear plane, and in polar nematic gels uniaxial stresses or strains generate temporal variations of the velocity difference.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.