https://doi.org/10.1140/epje/s10189-021-00063-4
Regular Article - Soft Matter
Probing roto-translational diffusion of small anisotropic colloidal particles with a bright-field microscope
1
Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via F.lli Cervi 93, 20090, Segrate, Italy
2
Division of Physical Chemistry Department of Chemistry, Lund University, Lund, Sweden
3
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
Received:
11
January
2021
Accepted:
29
March
2021
Published online:
26
April
2021
Soft and biological materials are often composed of elementary constituents exhibiting an incessant roto-translational motion at the microscopic scale. Tracking this motion with a bright-field microscope becomes increasingly challenging when the particle size becomes smaller than the microscope resolution, a case which is frequently encountered. Here we demonstrate squared-gradient differential dynamic microscopy (SG-DDM) as a tool to successfully use bright-field microscopy to extract the roto-translational dynamics of small anisotropic colloidal particles, whose rotational motion cannot be tracked accurately in direct space. We provide analytical justification and experimental demonstration of the method by successful application to an aqueous suspension of peanut-shaped particles.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.