https://doi.org/10.1140/epje/i2018-11635-6
Regular Article
Flagellated microswimmers: Hydrodynamics in thin liquid films
1
Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184, Roma, Italy
2
Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133, Roma, Italy
* e-mail: daniela.pimponi@uniroma1.it
** e-mail: paolo.gualtieri@uniroma1.it
Received:
2
August
2017
Accepted:
9
February
2018
Published online:
28
February
2018
The hydrodynamics of a flagellated microswimmer moving in thin films is discussed. The fully resolved hydrodynamics is exploited by solving the Stokes equations for the actual geometry of the swimmer. Two different interfaces are used to confine the swimmer: a bottom solid wall and a top air-liquid interface, as appropriate for a thin film. The swimmer follows curved clockwise trajectories that can converge towards an asymptotically stable circular path or can result in a collision with one of the two interfaces. A bias towards the air-liquid interface emerges. Slight changes in the swimmer geometry and film thickness strongly affect the resulting dynamics suggesting that a very reach phenomenology occurs in the presence of confinement. Under specific conditions, the swimmer follows a “crown-like” path. Implications for the motion of bacteria close to an air bubble moving in a microchannel are discussed.
Key words: Topical issue: Fluids and Structures: Multi-scale coupling and modeling
© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature, 2018