https://doi.org/10.1140/epje/s10189-024-00445-4
Regular Article - Living Systems
The role of epistasis in evolutionary rescue
Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
Received:
23
April
2024
Accepted:
18
July
2024
Published online:
27
July
2024
The process by which adaptive evolution preserves a population threatened with extinction due to environmental changes is known as evolutionary rescue. Several factors determine the fate of those populations, including demography and genetic factors, such as standing genetic variation, gene flow, availability of de novo mutations, and so on. Despite the extensive debate about evolutionary rescue in the current literature, a study about the role of epistasis and the topography of the fitness landscape on the fate of dwindling populations is missing. In the current work, we aim to fill this gap and study the influence of epistasis on the probability of extinction of populations. We present simulation results, and analytical approximations are derived. Counterintuitively, we show that the likelihood of extinction is smaller when the degree of epistasis is higher. The reason underneath is twofold: first, higher epistasis can promote mutations of more significant phenotypic effects, but also, the incongruence between the maps genotype–phenotype and phenotype–fitness turns the fitness landscape at low epistasis more rugged, thus curbing some of its advantages.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.