https://doi.org/10.1140/epje/s10189-023-00398-0
Regular Article - Soft Matter
Ions and dipoles in electric field: nonlinear polarization and field-dependent chemical reaction
Department of Physics, Kyoto University, 606-8502, Kyoto, Japan
Received:
4
October
2023
Accepted:
17
December
2023
Published online:
11
January
2024
We investigate electric-field effects in dilute electrolytes with nonlinear polarization. As a first example of such systems, we add a dipolar component with a relatively large dipole moment to an aqueous electrolyte. As a second example, the solvent itself exhibits nonlinear polarization near charged objects. For such systems, we present a Ginzburg-Landau free energy and introduce field-dependent chemical potentials, entropy density, and stress tensor, which satisfy general thermodynamic relations. In the first example, the dipoles accumulate in high-field regions, as predicted by Abrashikin et al.[Phys.Rev.Lett. 99, 077801 (2007)]. Finally, we consider the case, where Bjerrum ion pairs form a dipolar component with nonlinear polarization. The Bjerrum dipoles accumulate in high-field regions, while field-induced dissociation was predicted by Onsager [J. Chem. Phys.2, 599 (1934)]. We present an expression for the field-dependent association constant K(E), which depends on the field strength nonmonotonically.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.