https://doi.org/10.1140/epje/s10189-022-00249-4
Regular Article - Soft Matter
Dielectric relaxations in a liquid crystal along with thermistor application
Liquid Crystal Research Laboratory, Research Park, Bannari Amman Institute of Technology, 638401, Sathyamangalam, Tamil Nadu, India
a
lakshminarayanammohan@bitsathy.ac.in
Received:
13
October
2022
Accepted:
16
November
2022
Published online:
2
December
2022
A thermotropic hydrogen bond liquid crystal ClBAO + 6BAO is synthesized by mixing in equimolar ratios of chlorobenzoic acid and hexyloxybenzoic acid. FTIR studies conform the formation of hydrogen bond between the precursors. This mesogen exhibits nematic phase with long thermal range. DSC thermogram specified the transition temperatures and their respective enthalpy values. Dielectric spectroscopy is performed in the range between 5 Hz and 13 MHz; two types of relaxations, namely type 1 and types 2, are identified and studied extensively. Both of these relaxation are observed to follow Debye relaxation behavior. Type 1 relaxation process, referred as soft mode, is examined at 1 kHz; a mild shift in the relaxation frequency is noticed as temperature decreased. Type 2 relaxation is observed at 9.4 MHz, and the relaxation frequency magnitude shifted to 10.61 MHz with decrement in the temperature. Cole–Cole plots are constructed for both of these relaxation, and the corresponding activation energy is experimentally deduced from the Arrhenius plots. Another interesting observation is the temperature response of this mesogen to resistance. Both positive and negative slopes are identified in thermos-resistive plots thus by modulating the liquid crystal temperature. Perhaps, this is the first report to notice both behaviors in a mono-mesogen segregated by few degrees of temperature. Features of dielectric studies and thermistor applications are discussed in detail.
Novel Molecular Materials and Devices from Functional Soft Matter. Guest editors: Jean-Marc Di Meglio, Aritra Ghosh, Orlando Guzmán, P. Lakshmi Praveen.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.