https://doi.org/10.1140/epje/s10189-021-00140-8
Regular Article - Flowing Matter
Wetting between Cassie–Baxter and Wenzel regimes: a cellular model approach
Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
Received:
18
August
2021
Accepted:
18
October
2021
Published online:
16
November
2021
The cellular model with periodic boundary conditions was proposed for the study of liquid–solid interface properties of solid surfaces decorated by a regular pattern. The solid surface was represented by a mosaic of truncated pyramids of two different slopes of side walls equivalent to a surface covered with triangular grooves of different dihedral angles. On the basis of the computations performed for a single elementary cell, the components of the interfacial energies and the apparent contact angles have been found for different Young contact angles and different tilting angles of the pyramid walls. It was found that at certain sets of angles, the wetting takes place with the partial coverage of the pyramid sidewalls—in between the Cassie–Baxter and Wenzel regimes. The influence of the line tension on the studied surface wettability was also examined.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.