https://doi.org/10.1140/epje/i2020-11981-8
Regular Article
Phase-field modelling of 2D island growth morphology in chemical vapor deposition
1
Guangdong Technion, Israel Institute of Technology, Shantou, China
2
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, China
3
Technion, Israel Institute of Technology, Haifa, Israel
4
McGill University, Montreal, Canada
* e-mail: laishan.yang@mail.mcgill.ca
** e-mail: nan.wang@gtiit.edu.cn
Received:
30
December
2019
Accepted:
13
August
2020
Published online:
11
September
2020
The rich island morphology of two-dimensional (2D) materials during chemical vapor deposition (CVD) growth process is studied using a computational model based on a Burton-Cabrera-Frank (BCF) type crystal growth theory. A previously formulated phase-field (PF) model for the BCF crystal growth process is employed to investigate the effect of various growth conditions, such as the concentration of absorbed atoms on the substrate and the growth temperature, that have been experimentally known to significantly impact the island morphology. It is shown that, within this simple model, the rich morphology of 2D islands in CVD growth can be well reproduced. With increasing substrate temperature, the 2D island changes from dendritic to compact shape. When considering the energy difference between the zigzag and the armchair edges of the 2D island, most commonly known morphologies, from quasi-sixfold compact islands to spiky triangular and compact triangular shapes, are observed in the model. Growth mechanisms associated with different island shapes and potential model improvements are also discussed.
Key words: Topical issue: Branching Dynamics at the Mesoscopic Scale
© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature, 2020