https://doi.org/10.1140/epje/i2018-11651-6
Regular Article
The tension of framed membranes from computer simulations
MEMPHYS - Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
* e-mail: ipsen@memphys.sdu.dk
Received:
7
October
2017
Accepted:
13
March
2018
Published online:
28
March
2018
We have analyzed the behavior of a randomly triangulated, self-avoiding surface model of a flexible, fluid membrane subject to a circular boundary by Wang-Landau Monte Carlo computer simulation techniques. The dependence of the canonical free energy and frame tension on the frame area is obtained for flexible membranes. It is shown that for low bending rigidities the framed membrane is only stable above a threshold tension, suggesting a discontinuous transition from the collapsed (branched polymer) state to a finite tension extended state. In a tension range above this threshold tension the membranes display power-law characteristics for the equation of state, while higher tension levels includes both an extended linear (elastic) as well as a highly non-linear stretching regime. For semi-flexible membranes a transition from extended to buckled conformations takes place at negative frame tensions. Our analysis indicates that at zero frame tension the crumpling transition of fluid membranes show characteristics of both critical behavior and a discontinuous transition at low bending rigidities.
Key words: Soft Matter: Interfacial Phenomena and Nanostructured Surfaces
© The Author(s), 2018