https://doi.org/10.1140/epje/i2015-15094-3
Regular Article
Minimal model for transient swimming in a liquid crystal
1
School of Engineering, Brown University, 02912, Providence, RI, USA
2
Aalto Science Institute (AscI), Aalto University, Otaniementie 17, FI-02150, Espoo, Finland
3
NORDITA, Roslagstullsbacken 23, 106 92, Stockholm, Sweden
4
Department of Physics, Brown University, 02192, Providence, RI, USA
* e-mail: madison_krieger@brown.edu
** e-mail: thomas_powers@brown.edu
Received:
4
June
2015
Revised:
23
July
2015
Accepted:
29
July
2015
Published online:
31
August
2015
When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong-anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity.
Key words: Flowing Matter: Liquids and Complex Fluids
© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg, 2015