https://doi.org/10.1140/epje/i2013-13082-3
Regular Article
Intermediate asymptotics of the capillary-driven thin-film equation
Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI, Paris, France
* e-mail: thomas.salez@espci.fr
Received:
24
May
2013
Accepted:
10
June
2013
Published online:
9
August
2013
We present an analytical and numerical study of the two-dimensional capillary-driven thin-film equation. In particular, we focus on the intermediate asymptotics of its solutions. Linearising the equation enables us to derive the associated Green’s function and therefore obtain a complete set of solutions. Moreover, we show that the rescaled solution for any summable initial profile uniformly converges in time towards a universal self-similar attractor that is precisely the rescaled Green’s function. Finally, a numerical study on compact-support initial profiles enables us to conjecture the extension of our results to the nonlinear equation.
Key words: Flowing Matter: Interfacial phenomena
© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg, 2013