2022 Impact factor 1.8
Soft Matter and Biological Physics
Eur. Phys. J. E 2, 75-89

Solvable lattice gas models of random hetero-polymers at finite density: I. Statics

J. van Mourik

Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK, and Istituto Nazionale di Fisica della Materia, Via Beirut 2-4, 34014 Trieste, Italy
jvmourik@mth.kcl.ac.uk

Received 15 June 1999 and Received in final form 14 October 1999

Abstract
We introduce $\infty$-dimensional lattice gas versions of three common models of random hetero-polymers, in which both the polymer density and the density of the polymer-solvent mixture are finite. These solvable models give valuable insight into the problems related to the (quenched) average over the randomness in statistical mechanical models of proteins, without having to deal with the hard geometrical constraints occurring in finite-dimensional models. Our exact solution, which is specific to the $\infty$-dimensional case, is compared to the results obtained by a saddle-point analysis and by the grand ensemble approach, both of which can also be applied to models of finite dimension. We find, somewhat surprisingly, that the saddle-point analysis can lead to qualitatively incorrect results.

PACS
61.41.+e Polymers, elastomers, and plastics - 75.10.Nr Spin-glass and other random models

Copyright EDP Sciences, Società Italiana di Fisica, Springer-Verlag