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Abstract. We observed the motion of an organelle transported by motor proteins in cells using fluorescence
microscopy. Particularly, among organelles, the mitochondria in PC12 cells were studied. A mitochondrion
was dragged at a constant speed for several seconds without pausing. We investigated the fluctuation
dissipation theorem for this constant drag motion by comparing it with the motion of Brownian beads
that were incorporated into the cells by an electroporation method. We estimated the viscosity value inside
cells from the diffusion coefficients of the beads. Then the viscosity value obtained by using the beads was
found to be slightly lower than that obtained from the diffusion coefficient for the organelle motion via the
Einstein relation. This discrepancy indicates the violation of the Einstein relation for the organelle motion.

1 Introduction

The fluctuation dissipation theorem (FDT), the fluctu-
ation theorem (FT) and their several important conse-
quences have been used in biological systems recently to
investigate their energetic properties [1–12]. For example,
the Jarzynski equality and the Crooks fluctuation theo-
rem are useful in computing the free energy difference be-
tween two equilibrium states and have been experimen-
tally tested in single RNA/DNA hairpin systems [4–6].
Another kind of the FT has been suggested as being use-
ful for measuring the forces of motor proteins [7–12].

In this present study, we investigated diffusion proper-
ties and the FDT for organelle motion in a living cell that
a 1μm sized organelle was transported by motor proteins
traveling along microtubules in a cell (fig. 1(a)) [13]. The
motion of organelles includes movements and pauses. Typ-
ically organelles were dragged for several seconds without
pausing. While subdiffusive behavior has been reported
for the motion of organelles, including complex dynamics,
such as movements and pauses [14], diffusion appeared
normal when we focused only on motion at a constant
speed. Although the fluctuation properties for the complex
motion of organelles are often studied, those for the con-
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stant drag motion have been less focused on. Investigation
of this non-equilibrium steady state is important because
drag force acting on an organelle may provide informa-
tion to elucidate the mechanism of organelle transport by
multiple motors.

We measured the diffusion coefficient for the constant
drag motion of an organelle, and compared it with the
diffusion coefficients of Brownian beads incorporated into
cells by an electroporation method. These beads were as-
sumed to diffuse in the cells mainly due to thermal noise.
The viscosity values were estimated from the diffusion co-
efficients of the beads by using the Einstein relation. Be-
cause the large molecules interacted with vesicles and fila-
ments as well as with proteins, the viscosity value obtained
by using 1μm sized beads was much higher than the vis-
cosity of cytosol. Then this value was compared with that
estimated from the diffusion coefficient of transported or-
ganelles using the Einstein relation. The former was found
to be slightly lower than the latter. The discrepancy indi-
cates the violation of the Einstein relation for the organelle
motion.

2 Fluorescence observation

We experimentally observed the mitochondria in PC12
cells (fig. 1(b)). PC12, a cell line derived from rat
pheochromocytoma, has been widely used as a model
system for neuronal differentiation [15]. We chose to
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Fig. 1. (a) Schematic of mitochondrial transport (not to scale).
The sizes of the organelle and the motors are approximately
1 μm and 10 nm, respectively. (b) Fluorescence microscopy of
PC12 cells; each bright, round spot represents a mitochondrion
(left). A representative image of mitochondria in a PC12 cell
observed by transmission electron microscopy (see Method in
Supplementary Material) (right).

study mitochondria because they can be brightly and
selectively stained with an organic fluorescent dye,
tetramethylrhodamine ethyl ester (see Method in Sup-
plementary Material). The shape of a mitochondrion
varies considerably among different types of cells. They
normally take an elongated tubular shape but in various
sizes. Interestingly, however, they took similar oblong
shapes in the differentiating PC12 cells, as shown in
the fluorescence images (fig. 1(b), left) and the electron
micrographs (fig. 1(b), right). Mitochondria observed in
PC12 cells were transported by motor proteins along
microtubules for several seconds without pausing (see
Supplementary Movies). During these time intervals,
large changes in mitochondrial shapes were not observed.
The position X(t) of the center of a mitochondrion was
calculated from the recorded images. Figure 2(a) shows
the trajectories obtained for approximately 350 mito-
chondria from 48 different cells with velocities v ranging
from approximately 200 to 1500 nm/s. The trajectories
were identified between long pauses (∼ 1 s) (fig. 3(a),
inset). Note that in fig. 3(a), movement in all directions
is represented along the x-axis, which is the direction of
microtubules. The microtubules were considered to be
straight for several micron length (fig. 2).

For X(t) as shown in fig. 3(a), whose length is longer
than 1.5 s, we calculated the power spectrum S(ν) defined

Fig. 2. Fluorescence observation of microtubules in the cells
(see Method in Supplementary Material). The white curves
were microtubules. The microtubules were considered to be
straight for several micron length. Intervals between micro-
tubules were about 1.5 μm.

by

S(ν) =
〈|X̂ν |2〉

τ
, X̂ν =

∫ +τ/2

−τ/2

X(t)e−i2πνt dt, (1)

where τ = Nw/23 s (note that the recording rate was 23
frames/s), Nw is the window size and 〈·〉 denotes the time
average over the trajectory. In fig. 3(b) (top), normal dif-
fusive behavior (S(ν) ∝ ν−2) was observed for small ν.
(Note that the behavior of S(ν) for large ν was consid-
ered to be a numerical artifact, see sect. IC of Supple-
mentary Material.) While subdiffusive behavior has been
reported for the motion of a different organelle, including
complex dynamics, such as movements and pauses [14],
diffusion appeared normal when we focused only on mo-
tion at a constant speed, noting that diffusion became
abnormal when the trajectories included pauses and re-
versals (fig. 3(b), bottom). The normal diffusive behavior
(S(ν) ∝ ν−2) for small ν indicated that for the large scale
behavior of X(t) can be phenomenologically described by

dX

dt
= v +

√
2Dmξ(t), (2)

where ξ is Gaussian noise with a variance equal to 1.
The value of the diffusion coefficient Dm of a mito-

chondrion was determined as follows: We divided the tra-
jectories X(t) shown in fig. 3(a) into 10 groups according
to the velocity values (in nanometers per second) of the
mitochondria as follows: 200 < v ≤ 300; 300 < v ≤ 400;
400 < v ≤ 500; 500 < v ≤ 600; 600 < v ≤ 700; 700 <

v ≤ 800; 800 < v ≤ 900; 900 < v ≤ 1000; 1000 < v ≤
1200; 1200 < v ≤ 1500. Ideally, Dm of each mitochondrion
should be estimated using the trajectory of one mitochon-
drion; however, we could not obtain a sufficiently long
measurement of X(t) from one mitochondrion to accu-
rately calculate Dm, because mitochondria in PC12 cells
often stopped after moving for several seconds. Instead,
we obtained an approximate value of Dm from trajec-
tories of different mitochondria for each group, setting
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Fig. 3. (a) The trajectories X(t), which were identified be-
tween long pauses (inset), of approximately 350 mitochondria
from 48 cells. The recording rate was 23 frames/s. (b) The
power spectrum S(ν) calculated using X(t), shown in (a),
whose length is longer than 1.5 s, with a window size Nw = 25

or 26 (top). Here we plot S(ν)ν2 as a function of ν to see clearly
S(ν) ∝ ν−2 for small ν. On the other hand, S(ν) calculated
using the trajectories that include pauses and reversals (bot-
tom, inset: an example of such trajectories), was not ∝ ν−2

(bottom).

the velocity range to less than
√

2Dm (then grouping dif-
ferent trajectories was considered not to affect on veloc-
ity fluctuation much). To estimate Dm, for each group,
we calculated the probability distribution P (ΔX), where
ΔX = X(t + Δt) − X(t). Figure 4(a) shows the values
of P (ΔX) for Δt = 43, 87, 130, and 174ms for the ve-
locity range of 900–1000 nm/s (for the complete results

Fig. 4. (a) Plot of P (ΔX), where ΔX = X(t + Δt) − X(t)
(X(t) is a trajectory shown in fig. 3(a)) fitted using a Gaus-
sian function exp(−(ΔX − b)2/2a)/

√
2πa (the black curves),

where a and b are fitting parameters for the velocity range
of 900–1000 nm/s (for the complete results for the 10 groups,
see fig. S4 of Supplementary Material). (b) The variance a
(= 〈(ΔX−〈ΔX〉s)2〉s) of P (ΔX) is plotted as a function of Δt.
Here 〈·〉s denotes a sample average. Each color represents the
group classified according to the velocity values (in nanometers
per second) of X(t) shown in fig. 3(a).

for the 10 groups, see fig. S4 of Supplementary Material).
Each P (ΔX) was well described by a Gaussian function
exp(−(ΔX − b)2/2a)/

√
2πa (black curves in fig. 4(a)),

where a (= 〈(ΔX − 〈ΔX〉s)2〉s) and b (= 〈ΔX〉s) are
fitting parameters (here 〈·〉s denotes a sample average).
Then, Dm was defined as a/2Δt, and the value of a/Δt
was obtained by the fitting of the graph in fig. 4(b).

3 Fluctuation dissipation theorem

In the fluctuation dissipation theorem (FDT), a friction
coefficient is a significant quantity in statistical mechanics
as well as a diffusion coefficient. Because the friction co-
efficient Γm of a mitochondrion can be approximated by
Γm = 6πηrm with a shape approximated by a sphere hav-
ing the radius rm, we were able to investigate Γm based
on the fluorescence intensity of a mitochondrion, which is
proportional to rm. Here, η is the viscosity of medium.
Note that we cannot measure the sizes of mitochondria
(rm) in the cells because the fluorescent images were not
clear enough to measure their diameters accurately (see
the inset in fig. 5). Figure 5 shows that the fluorescence
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Fig. 5. Total fluorescence intensity (blue) and diffusion coeffi-
cients Dm (red) of mitochondria plotted as a function of veloc-
ity. The blue line shows the total fluorescence intensity = af/v
where af = 2.0 × 105, and the red line shows 1/Dm = aD/v
where aD = 1.0 × 105. Regarding the calculation of the to-
tal fluorescence intensity, we first measured the fluorescence
intensity of an mitochondrion along X-direction (the yellow
rectangle in the inset (left)). Then total fluorescence intensity,
which is the yellow area in the inset (right), was calculated. On
the other hand, Dm was measured from the variance of P (ΔX)
shown in fig. 4(a). The error bars of the fluorescence intensity
(blue) represent the standard deviations over different mito-
chondria, and the error bars of Dm (red) represent the fitting
errors when the values of a/Δt were obtained by the fitting of
the graphs in fig. 4(b).

intensity is inversely proportional to v. This indicates that
the velocity of a mitochondrion depends on the size, and
Γm = 6πηrm ∝ v−1. Note that an in vitro assay of kinesin
revealed that a viscous load was ∝ v−1 when the viscos-
ity of the buffer was increased until it was 60 times that
of water [16], while v did not depend on a viscous load
in the low-viscosity solution because the time for motor
proteins to hydrolyze ATP was slower than the diffusion
time of a probe attached to motor proteins. Γm ∝ v−1 was
observed in the cells because the viscosity of the medium
surrounding a 1μm sized organelle, which includes that of
the cytosol and reflects interactions with other organelles,
macromolecular complexes, and cytoskeletal components,
may be large.

The facts that Dm ∝ v and Γm ∝ v−1 seen in fig. 5
suggest that Dm ∝ 1/Γm. There is an inverse proportional
relationship of the fluctuation Dm and the dissipation Γm

based on the Einstein relation, which is a kind of the FDT,
Dm = kBT/Γm (kB is the Boltzmann constant and T is
the temperature of the environment). We attempted to
determine as to what extent the Einstein relation was vi-
olated in the non-equilibrium steady state. We note that
for another biological system (myosin filaments in actin fil-
aments), the violation of the fluctuation response relation
was of an order of magnitude [2].

In order to check the Einstein relation for the organelle
motion, we compared the organelle motion with the mo-

Table 1. Diffusion coefficient (μm2/s) for green fluorescent
protein (GFP), fluorescent beads (FB) and fluorescent nanodi-
amond (FD) obtained from FCS measurements. The diameters
of the probes are indicated by d. The error bars represent the
standard deviations over different cells. The values of 20 μm
sized PC12 cells were compared with those of 100 μm sized
Hela cells. The values without citations were obtained in the
present study.

probe PC12 cells Hela cells

GFP (d = 4nm) 23 ± 4.0 24 ± 3.5 [18]

FB (d = 60 nm) 0.85 ± 0.4 1.0 ± 0.5 [18]

FD (d = 150 nm) no data 0.08 [20]

FB (d = 320 nm) 0.046 ± 0.023 no data

FB (d = 460 nm) 0.038 ± 0.022 0.030 ± 0.024

tion of Brownian beads (fluorescent beads) incorporated
into the PC12 cells by an electroporation method. The
sizes of the beads were similar to those of mitochondria.
Using fluorescence correlation spectroscopy (FCS) mea-
surement of the beads, we estimated the viscosity val-
ues (ηFCS) of the surrounding medium to be ηFCS = 2–
4 × 10−8 pN s/nm2 (20–40 times the viscosity of water).
(In the following section, we explained about the FCS
measurement in detail.) On the other hand, when we
estimated the viscosity (ηER) by applying the Einstein
relation to the organelle motion, we obtained ηER =
6× 10−8 pN s/nm2 (60 times the viscosity of water). Here
we substituted 〈rm〉s = 400 nm (S.D. = 100 nm) obtained
by the transmission electron microscopy measurements
(fig. 1(b), right), Dm = 0.009μm2/s at 〈v〉s = 900 nm/s
and T = 37 ◦C, into Dm = kBT/6πηER〈rm〉s. By com-
paring ηER with the real viscosity value ηFCS, we found
that the extent of violation of the Einstein relation for the
organelle motion was about 2 (∼ ηER/ηFCS).

4 Fluorescence correlation spectroscopy
(FCS)

FCS is the measurement method that dynamic properties,
such as a diffusion coefficient, of fluorescent molecules in
cells are obtained from their fluorescence intensity, and at-
tracts attention in the fields of cell biology and biophysics.
To estimate the viscosity of the intracellular medium of
PC12 cells, we measured the diffusion coefficients D of
different fluorescent probes (table 1) by using FCS (see
Method in Supplementary Material) [17, 18]. In our FCS
experiment, the fluorescent probes were taken in the cells
as follows: Green fluorescent proteins (GFPs) were ex-
pressed in the cells, and fluorescent beads were incor-
porated into the cells using an electroporation method
(fig. 6(a) for 460 nm sized beads).

Figure 6(b) (inset) shows a plot of I(t), which is the
fluorescence intensity of 460 nm sized beads diffusing in a
PC12 cell. Using I(t), the autocorrelation function g(τ)
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Fig. 6. (a) A PC12 cell after electroporation with 460 nm sized
fluorescent beads. The measured point with FCS (a plus sym-
bol) and the immobilized beads (red arrows) are indicated.
(b) FCS measurement result of the autocorrelation function
G(τ) defined by eq. (4) (open circles), where I(t) is the fluo-
rescence intensity (inset). From the fitting function (solid curve
described by eq. (5)), we obtained the diffusion coefficient D
(= 0.04 ± 0.02 μm2/s) for the 460 nm sized beads.

was calculated as

g(τ) =
〈I(t)I(t + τ)〉

〈I〉2 , (3)

where 〈·〉 denotes a time average. Note that in fig. 6(b),
we plotted G(τ), where

G(τ) =
g(τ)
N

, (4)

and N is a normalization factor defined by G(0) = 2. g(τ)
was fitted using the two-component model with a triplet
term

g(τ) = 1 +
1 − ftriplet + ftriplete−τ/τtriplet

n(1 − ftriplet)

×
2∑

i=1

fi

(
1 +

τ

τi

)−1 (
1 +

τ

s2τi

)−1/2

, (5)

where fi and τi are the fraction and diffusion time of com-
ponent i, respectively, n is the average number of fluores-
cent particles in the excitation-detection volume defined

Fig. 7. Viscosity ηFCS (pN s/nm2) for green fluorescent protein
(GFP), fluorescent beads (FB) and fluorescent nanodiamond
(FD). ηFCS were calculated from diffusion coefficients D shown
in table 1 using the equations DΓ = kBT (T = 25 ◦C) and
Γ = 6πηFCSr, where r = d/2. The values of 20 μm sized PC12
cells (red) were compared with those of 100 μm sized Hela cells
(blue). The error bars show the maximum and minimum values
of ηFCS calculated by using the standard deviations of D (ta-
ble 1). The ranges of ηER was estimated by using the standard
deviation of mitochondrial size rm. Note that the viscosity of
water is 1×10−9 (pN s/nm2) at 25 ◦C.

by the radius w0 and length 2z0, and s is the structure pa-
rameter representing the ratio s = z0/w0. For the 460 nm
sized fluorescent beads in the cytosol of the PC12 cell,
g(τ) was fitted by the two-component model whose pa-
rameters are n=12, f1 = 0.25, f2 = 0.75, τ1 = 1.8ms,
τ2 = 220ms, s = 6, ftriplet=0.08 and τtriplet = 10μs.
Here we fitted our data for the 460 nm sized beads us-
ing eq. (5), which may not be regarded as a point-like
particle because of their large size, because in a previ-
ous study [19], eq. (5) provided the proper value of the
diffusion coefficient of 300 nm sized fluorescent beads. Us-
ing τi obtained by the fitting, the diffusion coefficient Di

was calculated from the published diffusion coefficient for
the standard dye (rhodamine-6G) (DRh6G = 280μm2/s,
τRh6G = 21μs) with the relation

Di

DRh6G
=

τRh6G

τi
. (6)

For the 460 nm sized beads in the cytosol, we obtained
D = 0.04 ± 0.02μm2/s from τ2. Note that the fast com-
ponent (τ1) was an apparent diffusional term caused by
blinking of the fluorescent beads [18]. For GFPs and the
other beads listed in table 1, we performed the same pro-
cedure to obtain D (table 1).

The viscosity of medium ηFCS was calculated from
diffusion coefficients D using the equations DΓ = kBT
(T = 25 ◦C) and Γ = 6πηFCSr (r (= d/2) is the radius
of a fluorescent probe) (fig. 7). Here we assumed that the
beads diffused in the cells mainly due to thermal noise.
Figure 7 shows that viscosity values did not significantly
depend on cell type (20μm sized PC12 cells and 100 μm
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sized Hela cells). Although the viscosity value obtained
by using GFPs was regarded as the viscosity of cytosol,
which were 5 times larger than that of water [18], the
structures inside the cells affected the viscosity for the
larger beads. Because the ηFCS values for the 150 nm sized
nanodiamonds and the 320 nm sized beads were similar to
that for the 460 nm sized beads within the accuracy of the
measurements, the ηFCS value for 1μm sized beads, which
was almost as large as a mitochondrion, was expected to
be similar to these values (note that it was difficult to in-
corporate larger beads, such as 1μm sized beads, into the
20μm sized PC12 cells). Because the intervals between
filaments in the PC12 cells were approximately 1.5μm
(fig. 2), the effective viscosity reflecting the intracellular
structure may converge until the size of the bead is about
1.5μm.

5 Summary and discussion

We investigated the motion of a 1μm sized organelle
transported at a constant speed by motor proteins. Such
an investigation may be important to help elucidate the
transport mechanism by multiple motors in future. We
measured the power spectrum (fig. 3(b)) and variances of
probability distribution (P (ΔX)) of ΔX (= X(t + Δt) −
X(t), X(t): the position of an organelle) (fig. 4(b)), and
found that the diffusion property was almost normal while
diffusion became abnormal when the trajectories included
pauses and reversals (fig. 3(b), bottom). When estimating
the diffusion coefficient (Dm) for the constant drag mo-
tion of organelles, we found Dm ∝ 1/Γm (fig. 5) where
Γm (= 6πηrm) is the friction coefficient. This inverse pro-
portional relationship was similar to that derived from the
FDT (the Einstein relation). However, when we compared
the viscosity value (ηER) obtained assuming the Einstein
relation for the organelle motion, ηER was slightly different
from the real viscosity value (ηFCS) (fig. 7). This indicates
Dm �= kBT/Γm.

From the estimated viscosity ηFCS = 2–4×10−8 pN s/
nm2 (fig. 7), the drag force exerted by motor proteins act-
ing on a 1μm sized organelle, which is driven at a speed of
1μm/s, is estimated to be approximately 0.3 pN based on
the equation F = 6πηFCS〈rm〉s〈v〉s. The drag force value
estimated here is smaller than the reported values for stall
forces of kinesin and dynein in cells (about 3 pN for single
kinesin and single dynein molecules) [21,22], which are re-
garded as the maximum forces that motors can exert. We
conclude, therefore, that the drag force value is reasonable.
Here, although kinesin and dynein travel in two different
directions along a microtubule (fig. 1(a)), the difference in
velocities of the two directions for the same mitochondrion
was < 20%, indicating that the drag force acting on a mi-
tochondrion did not vary significantly in either direction
within the accuracy of the measurement. Therefore, when
we analyzed the trajectory X(t), we ignored the direction
of mitochondrial movement. The difference in properties
(< 20%) of kinesin and dynein cannot be quantified from
the averaged drag force values measured here.

From fluorescence observations, the value of the fric-
tion coefficient of an organelle is usually difficult to de-
termine precisely, because its exact shape and intracel-
lular viscosity are unknown. When we used the equa-
tion F = 6πηFCS〈rm〉s〈v〉s, we assumed that the shape
of an organelle is spherical, (although this is typically
not the case) and 〈rm〉s was approximated from the elec-
tron micrographs of organelles shown as cross-sections.
If estimation of a drag force is possible only using tra-
jectories, which can easily be measured for any identi-
fied organelle based on their specific live staining using
fluorescent proteins or fluorescent dyes, such an estima-
tion helps to understand the results of in vivo exper-
iments in which physical measurements are really diffi-
cult and approximate values are still useful. Noting that
the two values (ηER and ηFCS) were similar within the
range of experimental error bars, and assuming the ef-
fect of thermal noise on the constant drag motion of an
organelle is large enough, the rough estimation of the
drag force can be obtained directly from X(t) shown in
fig. 3(a) using the fluctuation theorem (FT) of the form
ln[P (ΔX)/P (−ΔX)] = FΔX/kBT (sect. II in Supple-
mentary Material). We obtained F = 0.5 pN from the FT.

The number of motors attached to a single organelle
is reported to be one to five for dynein and one to four for
kinesin. These values are estimated biochemically using
quantitative western blotting [23]; however, the number
of these motors that actively carry the organelle is still
unclear. In vitro experiments showed that the number of
the active motors can be directly measured through stall
force measurements using optical tweezers, and the stall
force measurements of a large lipid droplet in a Drosophila
embryo showed that more than half of the droplets were
carried by two kinesins and two dyneins [21, 22]. Because
as well as on the stall force distributions, the number of
active motors will be considered based on the drag force
distributions, it is important to investigate drag forces act-
ing on organelles focusing on their constant drag motion.
The results of the present study will serve as a foundation
for related future studies on the drag force.
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